

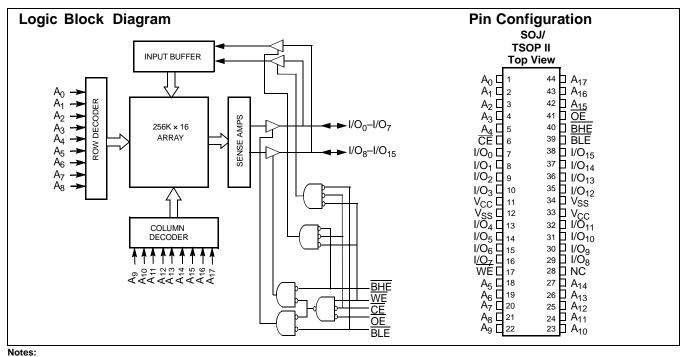
CY7C1041CV33

4-Mbit (256K x 16) Static RAM

Features

- Pin equivalent to CY7C1041BV33
- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive-A: –40°C to 85°C
 - Automotive-E: –40°C to 125°C
- High speed
 - t_{AA} = 10 ns
- Low active power
- 324 mW (max.)
- 2.0V data retention
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Pb-free and non Pb-free 44-pin 400-mil-SOJ, 44-pin TSOP II and 48-ball FBGA packages

Functional Description^[1]

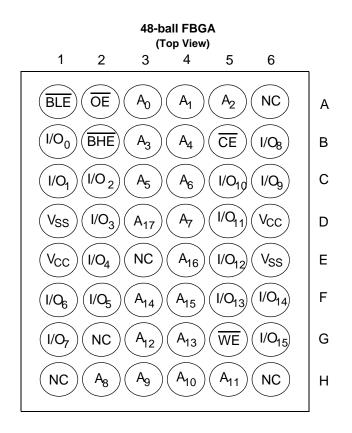

The CY7C1041CV33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (<u>CE</u>) and Write Enable (WE) inputs LOW. If Byte LOW Enable (BLE) is LOW, then data from I/O pins (I/O₀–I/O₇), is written into the location <u>specified</u> on the address pins (A₀–A₁₇). If Byte HIGH Enable (BHE) is LOW, then data from I/O pins (I/O₈–I/O₁₅) is written into the location specified on the address pins (A₀–A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte LOW Enable (BLE) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on $I/O_0 - I/O_7$. If Byte HIGH Enable (BHE) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins $(I/O_0-I/O_{15})$ are placed in <u>a</u> high-impedance state when the device is de<u>selected (CE</u> HIGH), the out<u>puts are di</u>sabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW, and WE LOW).

The CY7C1041CV33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.


1. For guidelines on SRAM system design, please refer to the "System Design Guidelines" Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		-10	-12	-15	-20	Unit
Maximum Access Time		10	12	15	20	ns
Maximum Operating Current	Commercial	90	85	80	75	mA
	Industrial	100	95	90	85	mA
	Automotive-A	100			85	mA
	Automotive-E				90	mA
Maximum CMOS Standby Current	Commercial/ Industrial	10	10	10	10	mA
	Automotive-A	10				mA
	Automotive-E				15	mA

Pin Configurations

Pin Definitions

Pin Name	44-SOJ, 44-TSOP Pin Number	48-ball FBGA Pin Number	I/О Туре	Description
A ₀ -A ₁₇	1–5, 18–27, 42–44	A3, A4, A5, B3, B4, C3, C4, D4, H2, H3, H4, H5, G3, G4, F3, F4, E4, D3	Input	Address Inputs used to select one of the address locations.
I/O ₀ –I/O ₁₅	7–10,13–16, 29–32, 35–38	B1, C1, C2, D2, E2, F2, F1, G1, B6, C6, C5, D5, E5, F5, F6, G6	Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation
NC	28	A6, E3, G2, H1, H6	No Connect	No Connects. This pin is not connected to the die
WE	17	G5	Input/Control	Write Enable Input, active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
CE	6	B5	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
BHE, BLE	40, 39	B2, A1	Input/Control	Byte Write Select Inputs, active LOW. BHE controls I/O ₁₅ –I/O ₈ , BLE controls I/O ₇ –I/O ₀
OE	41	A2	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
V _{SS}	12, 34	D1, E6	Ground	Ground for the device. Should be connected to ground of the system.
V _{CC}	11, 33	D6, E1	Power Supply	Power Supply inputs to the device.

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)	
Storage Temperature65°C to +150°C	
Ambient Temperature with Power Applied55°C to +125°C	
Supply Voltage on V_{CC} to Relative GND ^[2] –0.5V to +4.6V	
DC Voltage Applied to Outputs in High-Z State ^[2] –0.5V to V_{CC} + 0.5V	
in High-Z State ^[2] –0.5V to V _{CC} + 0.5V	
DC Input Voltage ^[2] 0.5V to V_{CC} + 0.5V	
Current into Outputs (LOW)20 mA	

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	

Operating Range

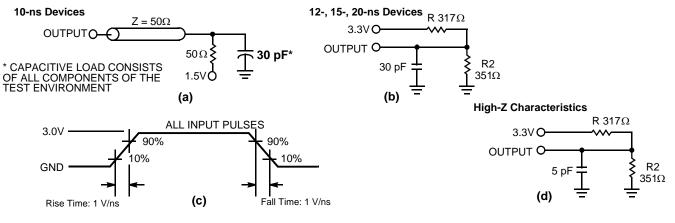
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	3.3V ± 0.3V
Industrial	-40°C to +85°C	
Automotive-A	-40°C to +85°C	
Automotive-E	-40°C to +125°C	

DC Electrical Characteristics Over the Operating Range

				-	10	-1	2	-15		-20		
Parameter	Description	Test Condit	ions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = –4.0 mA		2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8	.0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	V						
V _{IL} [2]	Input LOW Voltage			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage	$GND \le V_I \le V_{CC}$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1	+1	μΑ
Current	Current		Auto-A	-1	+1					-1	+1	μΑ
			Auto-E							-20	+20	μΑ
I _{oz}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	-1 +	+1	μΑ
		Output Disabled	Auto-A	-1	+1					-1	+1	μΑ
			Auto-E							-20	+20	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		90		85		80		75	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		100		95		90		85	mA
			Auto-A		100						85	mA
			Auto-E								90	mA
I _{SB1}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l/Ind'l		40		40		40		40	mA
	Power-down Current —TTL Inputs	CE <u>></u> V _{IH} V _{IN} ≥ V _{IH} or	Auto-A		40						40	mA
		$V_{IN} \le V_{IL}, f = f_{MAX}$	Auto-E								45	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l/Ind'l		10		10		10		10	mA
	Power-down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$	Auto-A		10						10	mA
		or $V_{IN} \le 0.3V$, f = 0	Auto-E								15	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3 \text{V}$	8	pF
C _{OUT}	I/O Capacitance		8	pF


Notes: 2. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 0.5V for pulse durations of less than 20 ns. 3. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance^[3]

Parameter	Description	Test Conditions	TSOP-II	FBGA	SOJ	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)		42.96	38.15	25.99	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)	test methods and procedures for measuring thermal impedance, per EIA / JESD51.	10.75	9.15	18.8	°C/W

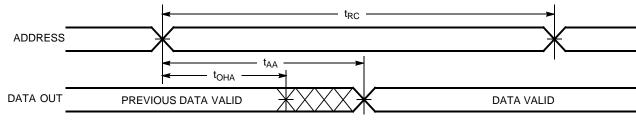
AC Test Loads and Waveforms^[4]

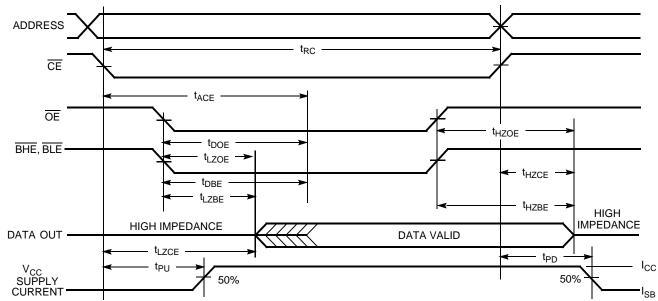
AC Switching Characteristics^[5] Over the Operating Range

		-	10	-	12	-15		-:	-20	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle			•	•		•	•		•	•
t _{power} [6]	V _{CC} (typical) to the first access	100		100		100		100		μS
t _{RC}	Read Cycle Time	10		12		15		20		ns
t _{AA}	Address to Data Valid		10		12		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15		20	ns
t _{DOE}	OE LOW to Data Valid		5		6		7		8	ns
t _{LZOE}	OE LOW to Low-Z	0		0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[7, 8]		5		6		7		8	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[7, 8]		5		6		7		8	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12		15		20	ns
t _{DBE}	Byte Enable to Data Valid		5		6		7		8	ns
t _{LZBE}	Byte Enable to Low-Z	0		0		0		0		ns
t _{HZBE}	Byte Disable to High-Z		6		6		7		8	ns

Notes:

Notes:
4. AC characteristics (except High-Z) for 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
6. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
7. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage
8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE} is less than t_{LZWE} for any given device.
9. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and t_{HZWE} for all write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.




AC Switching Characteristics^[5] Over the Operating Range (continued)

		-	10	-	12	-15 -20		20			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
Write Cycle ^{[!}	9, 10]	•	1		1	1	1	1	1		
t _{WC}	Write Cycle Time	10		12		15		20		ns	
t _{SCE}	CE LOW to Write End	7		8		10		10		ns	
t _{AW}	Address Set-Up to Write End	7		8		10		10		ns	
t _{HA}	Address Hold from Write End	0		0		0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns	
t _{PWE}	WE Pulse Width	7		8		10		10		ns	
t _{SD}	Data Set-Up to Write End	5		6		7		8		ns	
t _{HD}	Data Hold from Write End	0		0		0		0		ns	
t _{LZWE}	WE HIGH to Low-Z ^[7]	3		3		3		3		ns	
t _{HZWE}	WE LOW to High-Z ^[7, 8]		5		6		7		8	ns	
t _{BW}	Byte Enable to End of Write	7		8		10		10		ns	

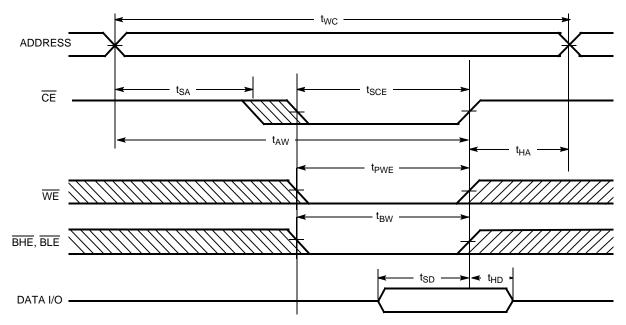
Switching Waveforms

Read Cycle No. 1^[11, 12]

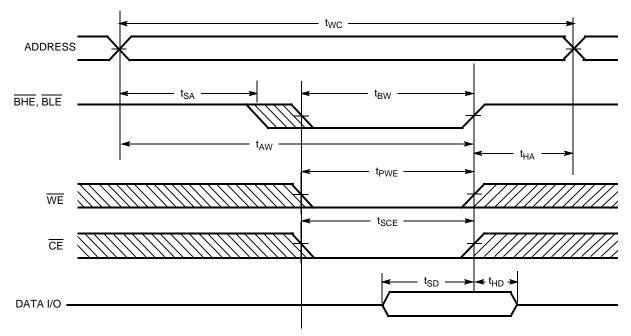
Read Cycle No. 2 (OE Controlled)^[12, 13]

Notes:

10. The minimum Write cycle time for Write Cycle No. 3 (\overline{WE} controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD}. 11. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BHE} = V_{IL}$.


12. WE is HIGH for Read cycle.

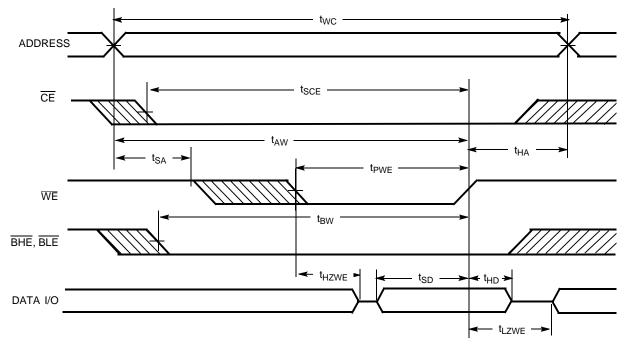
13. Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[14, 15]

Write Cycle No. 2 (BLE or BHE Controlled)


Notes:

14. Data I/O is high-impedance if \overline{OE} or \overline{BHE} and/or $\overline{BLE} = V_{IH}$. 15. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

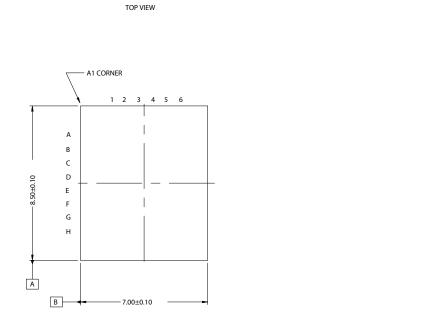
Switching Waveforms (continued)

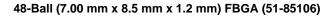
Write Cycle No. 2 (WE Controlled, OE LOW)

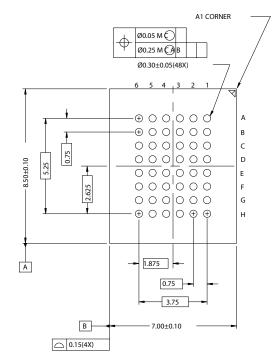
Truth Table

CE	OE	WE	BLE	BHE	1/0 ₀ -1/0 ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High-Z	High-Z	Power-down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High-Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

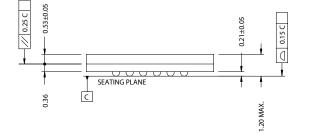
Ordering Information

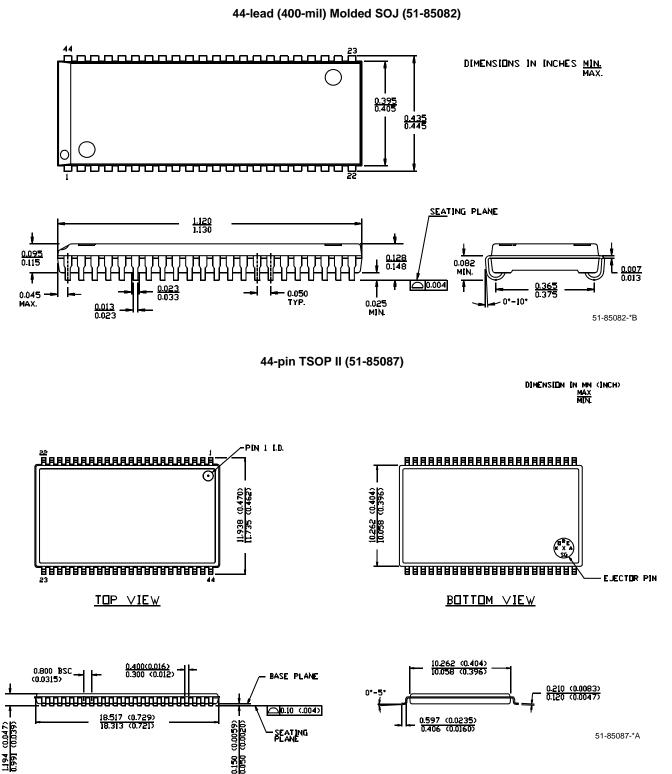

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1041CV33-10BAC	51-85106	48-ball Fine Pitch BGA	Commercial
	CY7C1041CV33-10BAXC		48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-10VC	51-85082	44-lead (400-mil) Molded SOJ	
	CY7C1041CV33-10VXC		44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-10ZC	51-85087	44-pin TSOP II	
	CY7C1041CV33-10ZXC		44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-10BAI	51-85106	48-ball Fine Pitch BGA	Industrial
	CY7C1041CV33-10BAXI		48-ball Fine Pitch BGA (Pb-Free)	
	CY7C1041CV33-10ZI	51-85087	44-pin TSOP II	
	CY7C1041CV33-10ZXI	1	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-10ZSXA		44-pin TSOP II (Pb-Free)	Automotive-A
	CY7C1041CV33-10BAXA	51-85106	48-ball Fine Pitch BGA (Pb-Free)	
12	CY7C1041CV33-12VC	51-85082	44-lead (400-mil) Molded SOJ	Commercial
	CY7C1041CV33-12VXC	1	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-12ZC	51-85087	44-pin TSOP II	
	CY7C1041CV33-12ZXC	1	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-12VXI	51-85082	44-lead (400-mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1041CV33-12ZI	51-85087	44-pin TSOP II	
	CY7C1041CV33-12ZXI		44-pin TSOP II (Pb-Free)	
15	CY7C1041CV33-15VC	51-85082	44-lead (400-mil) Molded SOJ	Commercial
	CY7C1041CV33-15VXC	1	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-15ZC	51-85087	44-pin TSOP II	
	CY7C1041CV33-15ZXC		44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-15VI	51-85082	44-lead (400-mil) Molded SOJ	Industrial
	CY7C1041CV33-15VXI	1	44-lead (400-mil) Molded SOJ (Pb-Free)	
	CY7C1041CV33-15ZI	51-85087	44-pin TSOP II	
	CY7C1041CV33-15ZXI	1	44-pin TSOP II (Pb-Free)	
20	CY7C1041CV33-20ZC	51-85087	44-pin TSOP II	Commercial
	CY7C1041CV33-20ZXC	1	44-pin TSOP II (Pb-Free)	
	CY7C1041CV33-20ZSXA	1	44-pin TSOP II (Pb-Free)	Automotive-A
	CY7C1041CV33-20VE	51-85082	44-lead (400-mil) Molded SOJ	Automotive-E
	CY7C1041CV33-20VXE]	44-lead (400-mil) Molded SOJ (Pb-Free)	7
	CY7C1041CV33-20ZE	51-85087	44-pin TSOP II	7
	CY7C1041CV33-20ZSXE]	44-pin TSOP II (Pb-Free)	1


Please contact your local Cypress sales representative for availability of these parts



BOTTOM VIEW


Package Diagrams



Package Diagrams (continued)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05134 Rev. *H

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109513	12/13/01	HGK	New Data Sheet
*A	112440	12/20/01	BSS	Updated 51-85106 from revision *A to *C
*В	112859	03/25/02	DFP	Added CY7C1042CV33 in BGA package Removed 1042 BGA option pin ACC Final Data Sheet
*C	116477	09/16/02	CEA	Add applications foot note to data sheet
*D	119797	10/21/02	DFP	Added 20-ns speed bin
*E	262949	See ECN	RKF	 Added Lead (Pb)-Free parts in the Ordering info (Page #9) Added Automotive Specs to Datasheet
*F	361795	See ECN	SYT	Added Pb-Free offerings in the Ordering Information
*G	435387	See ECN	NXR	Removed -8 Speed bin from Product offering. Corrected typo in description for <u>BH</u> E/BLE in pin definitions table on Pages corrected ther Pin name from OE2 to OE. Included the Maximum Ratings for Static Discharge Voltage and Latch up Current. Changed the description of I _{IX} current from Input Load Current to Input Leakage Current Added note# 4 on page# 4 Updated the Ordering Information table
*H	499153	See ECN	NXR	Added Automotive-A Operating Range Changed t _{power} value from 1 μs to 100 μs Updated Ordering Information table